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Abstract-An analytic solution for the elliptic boundary value problem with irregular geometrical boundary 
region using Schwarz’s alternating method is presented. The application of the solution addresses to the 
physical problems of temperature distribution and heat flux within homogeneous corners of buildings. A 
parametric analysis based on the general solution derives the concepts of “significant length” and 
“coefficient of equivalence” that can be used in engineering designs. 0 1997 Published by Elsevier Science 
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1. INTRODUCTION 

Solution to the thermal condition problem of building 
structure concerns the classical boundary value prob- 
lem of the transient, i.e. Fourier equation, or steady- 
state, i.e. Laplace equation under various boundary 
conditions. Typical analytic solutions are available for 
problems of regular geometrical boundaries by using 
tools like separation of variables and integral trans- 
forms [ 1,2, 31. Certain types of problems with irregu- 
lar geometrical boundary may be solved using con- 
formal mapping, co-ordinate transformation, or 
approximation techniques like Gerlerkin’s method [4, 
51. Very often the problem becomes intractable even 
with a slight change in boundary conditions. 

Thermal conduction is one of the major concerns 
in building design. For example, condensation causes 
structural damage to buildings and is also hazardous 
to the health of the occupants. Dampness occurs, most 
frequently, at a corner of two external walls and results 
in surface and interstitial condensation due to multi- 
dimensional heat transfer. At present, calculation 
methods provided by the engineering design Guides 
are derived from one-dimensional heat transfer theory 
[6,7]. No method is provided to account for heat loss 
from corner and bridge structures. 

While numerical methods are useful in solving heat 
transfer problems with irregular boundaries and non- 
linearity, issues remain that they give particular solu- 
tions to boundary value problems. The result can not 
be easily generalised to yield general solution [8]. Also 
discretisation and truncation errors of numerical 
methods are largely hidden. Careless use of numerical 

package would very often result in misleading results. 
To this end analytic solutions are needed as either 
the reference to validate the corresponding numerical 
methods or provide tools for engineering designs. 
Excellent examples may be found in Hassid [9] who 
solved the problem of two-dimensional multi-layered 
thermal bridge using a semi-discretisation technique ; 
Krarti [lo] who solved the problem of quasi-transient 
two-dimensional “slab-on-grade” type ground heat 
loss using complex variable and boundary profile esti- 
mation method, named as ITPE. 

2. THE BOUNDARY VALUE PROBLEM 

The boundary value problem for heat transfer in a 
homogeneous corner is shown in Fig. 1. Assuming 
that the heat flow and temperature distribution within 
the wall are two-dimensional ; at distance further away 
from the corner longitudinal heat flow of the wall 
becomes negligible ; temperatures of both inside and 
outside surfaces of the corner are subject to the bound- 
ary condition of the third-kind, i.e. dependent upon 
the rate of convective and conductive heat transfer of 
the corresponding sides. 

Introducing the temperature excess, 
9(x,y) = T(x, y) - T,, such that the reference tem- 
perature 0, = T, - T,, reference dimension, b, and 
defining to the following non-dimensional trans- 
formations : 
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NOMENCLATURE 

length and thickness of the wall, 
respectively [m] 
Biot modulus 
coefficient of equivalence 
discrete Fourier coefficients 
rate of heat convection to conduction 
b-4 
convective heat transfer coefficient of 
internal surface [W/m’ K] 
thermal conductivity [W/m K] 
significant length [m] 
heat flux [W/m] 
temperature of wall [K] 
U-value [W/m’ K] 
equivalent U-value [W/m’ K] 
space co-ordinates [ml. 

Greek symbols 
% ; A$ ; Y&n ; 6, coefficients of transformation 
& ratio of internal to external convective 

heat transfer coefficients 
9 excess temperature [K] 
6 excess temperature of internal surface 

WI 
V” eigen-values. 

Subscripts 

::s 
indices of coefficient 
external and internal, respectively 

I, II regions. 

Superscript 
k order of substitution. 
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Fig. 1. Geometry of the boundary value problem. 

The non-dimensional form of the boundary value 
problem of Fig. 1 is given in eqn (1). 

$+g=O x,ycABGEFO 

al9 
-z+Bi”=O x=O,O<y,<a 

a9 
z+.zBig=eBi x= 1;l <y<a 

a9 -=O x=a;O,<y<l 
dX 

a9 
-=0 y=a;O<x<l 
aY 

-E-Bi9=0 y=O;O<x<a 
ay 

as 
-+cBi9=eBi y= 1;l <x<a 
ay 

0) 

Note, in eqn (1) no circumflex is shown for the 
corresponding non-dimensional variables for clarity 
reason. Unless otherwise stated, the same format 
applies to the following text. 

2.1. The Schwarz’s alternating method 
The concept of the Schwarz’s alternating method 

is, in general, to subdivide the solution domain into 
regions where general solutions exist. Referring to Fig. 
1, let the domain of the corner be region B enclosed 
by boundary ABGEFO ; let Bl and B2 be the two sub- 
regions of domain B enclosed by boundary of ABC0 
and DEFO, respectively ; let B’ be the region of inter- 
section between Bl and B2 and enclosed by DGCO, 
such that, 

B’c Bl; B’cB2; BlnB2=B’; 

and BluB2=B (2) 

Provided that the general solutions exist for the 
regions of Bl and B2 based on piece-wise continuous 
boundary conditions, a solution over the domain B 
can be obtained by successive solution of the cor- 
responding problems in the regions of Bl and B2. This 
is done by firstly assigning an arbitrary function on the 
border CG of Bl to construct a piece-wise continuous 
function. The solution obtained can then be used as 
the first approximation to construct the boundary 



Heat loss from comers of buildings 683 

condition of B2. The successive solution progresses solution of L&(x, y) may be obtained using the mirror- 
and thus generates, a sequence of approximations to image of 9,(x, y). 
the sought solution, Q(x,y), over domain B, i.e. Using the method of separation of variables [l], the 

8\“(X,Y), IJ12’(x,y), . , syyx, y), . . . 
eigen-values of eqn (4) can be found by solving the 
following transcendental equation : 

~~*‘(x,Y), ~~p(x,y), . . ) Sfyx,y), . (3) 

The proof of the existence and convergence of the 
tan,,,=: (n= 1,2 ,..., n) 

sequence (3) to the general solution of the original 
boundary value problem of domain B may be found 

where?, < q2 <Q < ... < q, are the eigen-values. 

elsewhere [3]. 
The eigen-function is found as, 

2.2. Solution of the boundary value problem 
9,(x,y) = 

( 
coshq,y+ Esinhqny 

> 
cosq,(a-x) 

To construct the solution of eqn (I), in the region 
of Bl, assuming an arbitrary function on the border (n= 1,2,...,n) 

CG and the boundary condition of the third-kind on 
GB, a piece-wise continuous function J(x) over the 

Assuming that the piece-wise continuous function 

border BC is constructed. Similarly in B2, a piece- 
f,(x) can be expanded into orthogonal series of 

wise continuous fu.nctionf,(y) over the border DE is 
cos ?.(a-~) (see Appendix l), such that, 

constructed. This gives two well posed boundary value 
problems, as shown in eqns (4) and (5), respectively. 

f,(x) = 2 E;,cosv,@-.4 (7) 
n=l 

$+%=O x,y~x,y~ABCo 
a trial solution to eqn (4) may be obtained in the form 

aY* of, 

d 81 (a, y) W,Y) = 
--=o O<y<l 

ax 
F, 

awk Y) ( 
coshq,y+ Esinhq.y 

) 
-p+BiS,(O,y)=O O<y,<l ax 

ah (x, 0) 
‘l(~+$sinh%,+(~+l)cosh~,, 

___ +BiQ,(x,O) = 0 
ay 

0 < x < a 
x cos ~,,(a-x) (8) 

wx, 1) ~ +.sBi&(x, 1) = EBif(x) 0 < x < a where Fn (n = 1,2,. . . , n) are the coefficient sequence 
ay to be determined. 

(4) To construct the piece-wise continuous function on 
the border of BC, define 

and 

a% + a% 
- -=0 x,yoDEFO 
ax2 ay* 

ah,(X7 4 
--=00xX1 ax 

aw-0) -~+BiS,,(x,O)=O O<x< 1 ax 
aww -~+Bi9,,(0,y)=O O<y<a 

ay 

--~ +Mx,Y) O<x<l 
y=l 

(1 l<x<a 

(9) 

Substituting the trial solution, i.e. eqn (8) into the 
boundary condition of the third-kind at y = b, 

aw, 1) T+sBiS,(x,l) =eBif,(x) (10) 

aw,Y) 
multiplying each term of eqn (10) by cos q,(a -x) and 

____ +EBi911(l,y) = EBif2(y) 
ay 

0 <y < a integrating over the interval of [0, a], re-arranging all 
the terms and after the kth successive substitution, the 

(5) formulation of the solution sequence of F, yields : 

Since the two prolblems are symmetric along the line 
y = x, eqns (4) and (5) are mirror images of each 
other, i.e. 

MX,Y) = %(Y,X) (6) 
Without losing generality, the solution will be dem- 

onstrated on solving eqn (4) for 9,(x, y) in Bl. The 
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sequence (n) 

Fig. 2. The sequences of coefficients and coefficient-group. 

where, M is the upper limit for the truncation of 
infinitive summation. As the infinitive summations are 
convergent, the lower limit of M is determined such 
that the increase of which does not cause significant 
changes in coefficient sequence F,,. 

The formulations of coefficients c(, ; fis,, ; ys,, ; 6, are 
given in Appendix 2. 

The initial values of the coefficient sequence F,, 
(n = 1,2,. . . , &I) are obtained by assuming the fol- 
lowing continuous boundary condition over the entire 
border of BC, i.e. 

aw, 1) 
-----++~Bi9,(x,l) =EBi*l 

aY 
(12) 

Successive computation of eqn (11) results in the 
following coefficient sequences : 

F’,“(x, y), F’i*‘(x, y), , Ff’(x, y), 

F$*‘(x, y), Fi2’(x, y), . , Fik)(x, y), . . (13) 

It has been proved that the sequences of eqn (13) 
are uniformly converging and therefore solutions of 
9,(x,y) and 9,,(x,y) are convergent. In practice, the 
successive substitution process stops after satisfying 
the following convergence criterion : 

(14) 

Figure 2 shows the sequence of coefficient F, 
obtained after 22 successive substitutions based on the 
criterion of o = lo-‘. It can be seen that coefficient 
seqeuence Fn (n = 1,2,. . , M) converges uniformly 
and in particular, coefficient group 

(5 + f)sinhq.+ (i +l)coshq. 

diminishes after n > 20 

3. PARAMETRIC ANALYSIS 

3.1. Error estimation 
By using eqn (11) incorporating the coefficient 

sequence of F, (n = 1,2,. , M) shown in Fig. 2, the 
temperature field within domain Bl can be found. 

Figure 3 shows the non-dimensional temperature 
contours of the region of Bl for up to the length of 
L/b = 3.0. The prediction of Fig. 3 was based upon : 
E = 0.5 ; Bi = 10 ; OI = 1 and using 100 coefficients. 

To evaluate the accuracy of the prediction, Table 1 
shows the non-dimensional temperature distribution 
within the symmetric region of B’. The maximum non- 
symmetry error with reference to the dissector, y = x, 
is found by, 

e = maxlQ,(x,y)-&(y,x)l < 0.0008 

It is possible to increase the accuracy of non-sym- 
metry by further reducing the convergence criterion 0 
of eqn (14). 

3.2. Comparison of numerical prediction 
Comparison to the results obtained using numerical 

prediction has been made [ 111. The numerical pre- 
diction was based on a five-point central difference 
scheme with second-order accuracy, i.e. 

(15) 
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Fig. 3. Temperature contour of the corner. 

Table 1. Non-dimensional temperature distribution within region B’ 

X,Y 0 0.2 0.4 0.6 0.8 1.0 

0 0.00066 0.00487 0.00906 0.01317 0.01703 0.01965 
0.2 0.00487 0.03603 0.06717 0.0978 0.12676 0.15164 
0.4 0.00906 0.06717 0.12564 0.18397 0.23997 0.28898 
0.6 0.01317 0.0978 0.18397 0.27206 0.35962 0.4379 
0.8 0.01703 0.12677 0.23998 0.35962 0.48704 0.61005 
1.0 0.02043 0.15226 0.28944 0.43817 0.60999 0.84973 

Equation (15) rl:presents a numerical solution to 
the original partial differential problem with a certain 
accuracy as determined by the truncation and round- 
off errors. 

Using Taylor expansion, Qx+.+; Qx,y+Ay can be rep- 
resented as follows 

Substitute expansion (16) into eqn (15) and 
rearrange the terms, the truncation error of eqn (15) 
gives, 

(17) 

where, 

+ 0(Ax4, A#) 

which is the truncation error associated with the finite 

difference discretisation. Clearly, the truncation error 
is in the order of O(A2, Ay2) and negative definite. 

It follows that when the numerical form of the 
boundary-value problem, i.e. eqn (15), is being solved, 
it is, in reality a Poisson equation, i.e. eqn (17), being 
solved instead of the original Laplace equation. This 
gives a clear indication to the behaviour of the results 
to be expected from the numerical method. The trunc- 
ation error, R(x, y) acts as a source term. As being 
negative, it may be viewed as an “artificial heat sink” 
which is purely numerical origin and has no physical 
significance. 

Inspection of eqn (17) reveals that the intensity 
of the “artificial heat sink” diminishes progressively 
when the size of the numerical cell reduces pro- 
gressively and the numerical prediction approaches 
progressively towards the analytic solution. 

Figure 4 shows the deviations between the ana- 
lytical and numerical prediction referring to the 
location of the inside corner denoted by 9(1, l), in 
which a uniform spatial step, i.e. Ax = AY = Ah, is 
used for the ease of demonstration. 

The analytic solution may be useful as a tool to 
supplement the results obtained using transient one- 
dimensional conduction simulation packages using 
finite difference or response function methods, e.g. 
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Fig. 4. Comparison of analytic and numerical predictions. 
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3.2. The sig@icant length 
The significant length is defined as the distance L, 

from the corner beyond which the heat flow parallel 
to the wall becomes negligible, i.e. 

am Y) 
ax z 0. 

XTL, 

Let e be the minimal allowable error, the cor- 
responding distance of L, may be found as follows : 

a4 (4 42) 
ax = 1 =L, 

For example, for an allowable error of e < 0.001, 
the corresponding significant length of L, > 3.098 is 
found. For x > L, = 3.0, the heat flow may be con- 
sidered one-dimensional based on an allowable error 
of 0.0013. Fig. 5 shows the characteristics of the sig- 
nificant length. 

3.3. The equivalent U-value and the coefficient of equiv- 
alence 

In engineering design, the heat loss of an external 
wall is usually calculated based on the internal floor 
length of the wall. The local heat flux of an inside 
surface can be calculated by using eqn (8), which 
gives : 

FJ, 
\ 

sinh q. + z cash r~,, 
) 

cos q,, (a - x) 

kO” ($+~)sinh~,,+(~+l)coshq,, (I’) 

The total heat loss over the internal surface with a 
length of X and unit height can be found by, 

Qx = 
s 

k, 1) dx (20) 
I 

Introducing the significant length such that for all 
x > L,, q(x, l)lX>L, = const. eqn (20) becomes, 

Qr= 4q(x,1)dx+U0,(x-Ls) 
s 

(21) 
1 

Let U* be the equivalent U-value, such that, 

s 

L, 
u*e,(L,-1) = q(x, 1) dx (22) 

1 

Equation (21) becomes, 

QX = U*@, (L, - 1) + U0, (X-L,) (23) 

Let C, be the coefficient of equivalence, such that 

Ce,=; orU*=C,,U 

and eqn (23) becomes, 

Qx = I+(&-l)$+ 
I 

~0, (L, - 1) (24) 

Assuming for LX = 3.0, let L = X- 1 be the length 
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Fig. 5. The significant length. 

of the wall measured from the internal corner and found. An average conductivity of k = 0.175 W/m K 
height of the wall IV, eqn (24) becomes, is derived based on 

QX = :L+(C,,-1); 
I 

Utl,LW (25) 

It can be seen from eqn (25) that the “corner effect” 
diminishes and the heat flow approaches one-dimen- 
sional pattern when the length of the wall, L, increases. 

The coefficient of equivalence, Ceq, may be cal- 
culated based on eqn (22) i.e. 

G, =;[gl+;)+l] 
F, sinh I], + E cash q, 

> 

Figure 6 shows the results of C, with reference to 
Biot modulus and ratio E obtained using eqn (26). 

Example : To calculate the heat loss from a one-sided 
corner of multi-layered wall with unit height and vari- 
ous length, exte:rnal convective heat transfer 
coefficient ho = 16.0 W/m’ K and internal convective 
heat transfer coefficllent of h, = 8.0 W/m* K, the struc- 
ture of wall is given as follows : 

Thickness Conductivity Resistance 
Layer (mm) (w/mK) (m’ K/W) 

Brick 105 0.84 0.125 
Cavity 75 0.18 
Insulation 50 0.03 1.48 
Brick 105 0.84 0.125 
Plaster 15 0.16 0.09 

Based on the above a U-value of 0.457 W/m2 K is 

Cc/CR;. 
1 / i 

To calculate the two dimensional heat loss, firstly 
find Biot modulus Bi = 32.0 and E = 0.5. The 
coefficient of equivalence is obtained from Fig. 6, as 
C,, = 1.124. Heat loss can then be calculated using 
eqn (25). 

As a comparison, heat losses calculated based on 
the analytic formula of eqn (20), simplified formula 
of eqn (25) and one-dimensional U-value are given 
in Table 2. The relative error is based on 
(Qtheoreticat -Qid)/Qid. For two-sided corner wall, the 
error could be doubled. 

3.4. Comparison with approximate method 
Approximate methods, also known as the textbook 

methods, derived using the techniques of conformal 
mapping, graphic method, etc. are available as an 
effective way ofproducing estimation for the total heat 
transfer rate through an irregular geometry. These 
methods are mainly derived based on the boundary 
condition of the first-kind by which the surface tem- 
perature are known. The conduction shape factor 
method is used here as a further example for the com- 
parison exercise. 

Using the conduction shape factor method, the rate 
of heat transfer may be written as 

where 
q = R-S-AT (27) 

k thermal conductivity. 
S conduction shape factor. 
AT temperature difference of inner and outer surface. 
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Fig. 6. The coefficient of equivalence of U-value. 

Table 2. The comparison of calculations of heat losses 

Q t~~oret,ca,lb Qnmpmdb Qd Error 
Lib (w/m) (W/m) (W/m) (“/) 0.852 0.941 0.943 0.943 *.* 

2 0.571 0.571 0.457 24.945 
3 1.031 1.028 0.914 12.801 1 2 3 4 
5 1.946 1.942 1.828 6.455 
6 2.403 2.399 2.280 5.395 
8 3.317 3.313 3.194 3.851 10 4.23 1 4.227 4.109 2.969 0.007 0.020 0.028 0.029 0.029 . . . 

Fig. 7. Surface temperature field of the corner. 

the previous example. Figure 7 shows the temperature 
field of the inner and outer surface of the corner. 

For conduction through two plane sections and the 
To calculate the rates of heat transfer over various 

edge section of two walls of thermal conductivity k 
lengths of the wall using the conduction shape factor 

and uniform inner and outer surface temperature, the 
method, the mean surface temperature difference over 

conduction shape factor, S is given by, based on unit 
a given length has to be found. This is done by taking 

width of the wall [12] ; an average value of the participating nodal tem- 
peratures over the corresponding length, which gives, 

s = : +0.54 (28) 
according to Fig. 7, _ 

fJ Sections l-2 l-3 l-5 l-6 l-8 l-10 
For one-sided corner wall, after arrangement, eqn AT 0.880 0.891 0.902 0.903 0.906 0.908 

(28) becomes, 

q = k $+0.27 AT 
( > 

The heat losses from the one-sided corner are then 

(29) 
calculated using eqn (29), i.e. 

Lib 2 3 5 k 8 10 

Again here ATis the surface temperature difference. 
h/b (W/m) 0.576 1.036 1.938 2.393 3.301 4.209 

To use eqn (29), one has to find the two-dimensional It can be seen that on average the results obtained 
temperature distribution on the inner and outer sur- using the conduction shape factor method are close 
face of the corner wall. Here, the two-dimensional to the exact solution, second to the simplified method 
surface temperature field is found using the analytical and better than the U-value method. Clearly the ques- 
method, i.e. eqn (8) based on the properties used in tion remains that how the surface temperatures are 
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obtained. The selection of surface temperatures is 12. Krieth, F., Principles of Heat Transfer, Harper & Row, 

critical in using this method. In practice, it is difficult 1976, pp. 93. 

to find the correct ,surface temperatures of a wall prior 
to calculate the heat losses based on knowing the APPENDIX 1 

internal and external air temperatures. Theoretically, 
boundary value problems of boundary condition of 

Since the eigen-values of kernel sequence cos ?.(a-x), 
(n = 1,2,. , n) are not integers, the sequence is not Fourier 

the first and third kinds are two distinctive problems, series, However, it may be proved that if such expansion 
they require different solution techniques and each satisfies the following orthogonal conditions, i.e. 

serves its own domain of applications. 1. the kernel functions can be integrated ; 
2. the kernel functions satisfy the orthogonal condition, i.e. 

for X, = cosg.(a-x), (n = 1,2, .) 
$4. CONCLUSION 

A general solution for the elliptic boundary value 
j;Xtd~= {in ;‘z 

problem of two-dimensional corner with convective 
boundary condition using the Schwarz’s alternating 

the expansion is orthogona1, 

method is presented. The solution may be used to 
predict the temperature distribution within a two- 

APPENDIX 2 

dimensional corner of building. The accuracy of the Formulations of coefficients used in eqn (11) are listed as 
general solution has been examined and comparison follows : 
to the numerical prediction has been analysed. The 
concept of the “significant length” has been derived % = 4, 

( 
” + isin2n,a 
2 4% ) 

(Al) 

which indicates the influence of the two-dimensional 
corner thermal brifdge effect. A simplified while accu- sin(n,+n,)(a- 1) + sin(n.-Q(a- 1) 

rate formulation of the equivalent U-value is derived. 8,” = */. 
2(&l + %) 2(rl. - %) 

(n f s) 

Example has been demonstrated for the calculation 
of heat loss in engineering design. 

~+~sin~,(a-1) 
4% 

(n = s) 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

10. 

11. 
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642) 
1 

Y&. = r&i --[q cosq (a-l) 
n:+o: s s 

sinhq +Ecoshq 
“rl. n 

(A3) 

6,=isinq,(a-1) (s=l,2 ,..., M;n=1,2 ,..., M) 

(A4) 

in which 

cash 7. + f sinh 7. 

COsq,(a- 1) 

U”=(~+~)sinh%+(~+l)coshrl. 

(n= 1,2,...,M) (A7) 


